

دانشكدهٔ علوم رياضي

مدرس: دكتر شهرام خزايي

مقدمهای بر رمزنگاری

تمرین سری یک

مهلت ارسال: ۴ آبان

گردآورنده: مهشید دهقانی، محمدحسین کلانتری

- پاسخهای خود را در قالب یک فایل PDF با نام HW1-ID ارسال نمایید که ID شمارهٔ دانشجویی شما است.
- یادآوری می شود که در اختیار دادن راه حلهای مکتوب به سایر دانشجویان و یا منتشر کردن آن در اینترنت یا شبکههای اجتماعی غیرمجاز است و عواقب آن بر عهدهٔ نویسنده پاسخ است.
- مشورت در تمرینها مجاز است و توصیه می شود اما هر دانش جو موظف است که تمرین را به تنهایی انجام دهد و راه حل نهایی ارسال شده باید توسط خود دانش جو نوشته شده باشد. در صورت مشاهدهٔ هر گونه تخلف، نمرهٔ تمام تمرینات شخص خاطی صفر لحاظ خواهد شد.
- تمریناتی که به صورت دستنویس تحویل داده میشوند، باید به صورت کاملاً خوانا نوشته شود و با کیفیتی مطلوب و حجم پایین، اسکن و ارسال شود.
- به ازای هر روز تاخیر، ۵ درصد از نمره ی کسب شده کم می شود. در هر سری، اجازه ی حداکثر ۵ روز تاخیر دارید. در مجموع کل تمرینها، اجازه ی حداکثر ۱۰ روز تاخیر دارید.
- حداقل دو سری از تمرینها باید با استفاده از IAT_EX نوشته شده و تحویل داده شود. در غیر اینصورت ۰۵۰ نمره از نمره ی نهایی کسر خواهد شد.
 - لطفا فقط سه سوال را به انتخاب خود حل كنيد؛ حل سوالات بيشتر نمرهى اضافى ندارد.

Problem 1

Consider the following symmetric cryptosystem:

- The key generator algorithm produces a uniformly random bit as the secret key.
- The encryption algorithm receives a key $k \in \{0,1\}$ and a message $m = m_1 m_2 \in \{00,01,10,11\}$ where $m_1,m_2 \in \{0,1\}$ and produces a ciphertext $c = c_1 c_2$ as follows:

$$c_1 = m_1 \oplus k$$

$$c_2 = m_2 \oplus k$$

1. Describe the decryption algorithm.

2. For each of the following attackers, compute the advantage, i.e.,

$$\left| \Pr[SKE_{A,\Pi}^{ps} = 1] - \frac{1}{2} \right|,$$

where $SKE_{A,\Pi}^{ps}$ is the perfect security experiment executed between an attacker A and a challenger on cryptosystem $\Pi = (Gen, Enc, Dec)$, defined below:

- (a) $k \leftarrow \text{Gen}()$
- (b) $m_0, m_1 \leftarrow A()$
- (c) $b \leftarrow \{0, 1\}$
- (d) $c \leftarrow \operatorname{Enc}_k(m_b)$
- (e) $\hat{b} \leftarrow A(c)$

 $SKE_{A,\Pi}^{ps}$ also denotes the output of the experiment which is one if $b = \hat{b}$ and zero otherwise.

All attackers output two random and independent messages as challenge messages in phase (2). Upon receiving the ciphertext $c = c_1 c_2$, the guessed bit \hat{b} for attackers are as follows:

- A_1 : always outputs 1.
- A_2 : always outputs a random bit.
- A_3 : outputs 1 if $c_1 = c_2$.
- A_4 : outputs 1 if $c_1 = c_2$ and $m_0^1 = m_2^1$ where $m_0 = m_0^1 m_0^2$, otherwise it outputs a random bit.
- 3. Describe an attacker whose advantage is larger than that of A_4 .

Problem 2

We say that (Gen, Enc, Dec) with message and ciphertext spaces \mathcal{M} and \mathcal{C} is a statistically ϵ -indistinguishable secure SKE if for every $m_0, m_1 \in \mathcal{M}$ and every $T \subseteq \mathcal{C}$,

$$|\Pr[\operatorname{Enc}_K(m_0) \in T] - \Pr[\operatorname{Enc}_K(m_1) \in T]| \le \epsilon,$$

where the probabilities are taken over $K \stackrel{R}{\leftarrow} \text{Gen}()$ and the coin tosses of Enc.

- 1. Show that statistical 0-indistinguishability is equivalent to perfect security.
- 2. In analogy with adversarial indistinguishability, we say that an encryption scheme (Gen, Enc, Dec) satisfies ϵ -adversarial indistinguishability if every adversary \mathcal{A} succeeds at the adversarial indistinguishability experiment on page 31 in the textbook¹, with probability at most $\frac{1+\epsilon}{2}$:

¹Jonathan Katz, Yehuda Lindell: Introduction to Modern Cryptography, Third Edition.

- (a) \mathcal{A} outputs a pair of messages $(m_0, m_1) \in \mathcal{M}$.
- (b) A random key $K \stackrel{R}{\leftarrow} \text{Gen}()$ and a bit $b \stackrel{R}{\leftarrow} \{0,1\}$ are sampled. The ciphertext $c \stackrel{R}{\leftarrow} \text{Enc}_K(m_b)$ is computed and given to \mathcal{A} .
- (c) \mathcal{A} outputs a bit b' and succeeds if b = b'.

Show that if the encryption scheme (Gen, Enc, Dec) is statistically ϵ -indistinguishable, then it also satisfies ϵ -adversarial indistinguishability.

For the next three parts, suppose (Gen, Enc, Dec) is statistically ϵ -indistinguishable for message space \mathcal{M} . Below you will prove that the number of keys must be at least $(1 - \epsilon) \cdot |\mathcal{M}|$, therefore statistical security does not help much to overcome the limitations of perfect secrecy.

3. Call a ciphertext c decryptable to $m \in \mathcal{M}$ if there is a key K such that $Dec_K(c) = m$. Prove that for every pair of messages $m, m' \in \mathcal{M}$,

$$\Pr[\operatorname{Enc}_K(m) \text{ is decryptable to } m'] \geq 1 - \epsilon,$$

where the probability is taken over $K \stackrel{R}{\leftarrow} \text{Gen}()$ and the coin tosses of Enc.

4. Show that for every message $m \in \mathcal{M}$,

$$\mathbb{E}[\#\{m': \operatorname{Enc}_K(m) \text{ is decryptable to } m'\}] \geq (1-\epsilon) \cdot |\mathcal{M}|,$$

where \mathbb{E} represents the expected value function and again the probability is taken over K and the coin tosses of Enc. (Hint: for each m', define a random variable $X_{m'}$ that equals 1 if $\operatorname{Enc}_K(m)$ is decryptable to m', and equals 0 otherwise.)

5. Conclude that the number of keys must be at least $(1 - \epsilon) \cdot |\mathcal{M}|$.

Problem 3

In this problem, we consider definitions of perfect secrecy for the encryption of two messages (using the same key). Here we consider distributions over pairs of messages from the message space \mathcal{M} ; we let M_1, M_2 be random variables denoting the first and second message, respectively. (We stress that these random variables are not assumed to be independent.)

We generate a (single) key k, sample a pair of messages (m_1, m_2) according to the given distribution, and then compute ciphertexts $c_1 \leftarrow \operatorname{Enc}_k(m_1)$ and $c_2 \leftarrow \operatorname{Enc}_k(m_2)$; this induces a distribution over pairs of ciphertexts and we let C_1, C_2 be the corresponding random variables.

We say that an encryption scheme (Gen, Enc, Dec) is perfectly secret for two messages if for all distributions over $\mathcal{M} \times \mathcal{M}$, all $m_1, m_2 \in \mathcal{M}$, and all ciphertexts $c_1, c_2 \in \mathcal{C}$ with $\Pr[C_1 = c_1 \wedge C_2 = c_2] > 0$:

$$\Pr[M_1 = m_1 \land M_2 = m_2 \mid C_1 = c_1 \land C_2 = c_2] = \Pr[M_1 = m_1 \land M_2 = m_2]$$

Prove that no such encryption scheme can exist.

Problem 4

Consider each of the following encryption schemes and state whether the scheme is perfectly secret or not. Justify your answer by giving a detailed proof if your answer is *yes*, or a counterexample if your answer is *no*.

- 1. An encryption scheme whose plaintext space consists of the integers $\mathcal{M} = \{0, \dots, 12\}$ and key generation algorithm chooses a uniform key from the key space $K = \{0, \dots, 13\}$. Suppose $\operatorname{Enc}_k(m) = m + k \mod 13$ and $\operatorname{Dec}_k(c) = c k \mod 13$.
- 2. An encryption scheme whose plaintext space is $\mathcal{M} = \{m \in \{0,1\}^{\ell} \mid \text{the last bit of } m \text{ is } 0\}$ and key generation algorithm chooses a uniform key from the key space $\{0,1\}^{\ell-1}$. Suppose $\operatorname{Enc}_k(m) = m \oplus (k||0)$ and $\operatorname{Dec}_k(c) = c \oplus (k||0)$.
- 3. Consider an encryption scheme in which $\mathcal{M} = \{a, b\}$, $K = \{k_1, k_2, k_3, k_4\}$, and $\mathcal{C} = \{1, 2, 3, 4, 5, 6\}$. Suppose that Gen selects the secret key k according to the following probability distribution:

$$\Pr[k = k_1] = \Pr[k = k_4] = \frac{1}{6}, \quad \Pr[k = k_2] = \Pr[k = k_3] = \frac{1}{3}$$

and the encryption matrix is as follows:

$$\begin{array}{c|cccc} & a & b \\ \hline k_1 & 1 & 4 \\ k_2 & 2 & 3 \\ k_3 & 3 & 2 \\ k_4 & 4 & 1 \\ \end{array}$$

4. Consider a variant of the one-time pad with message space $\{0,1\}^L$ where the key space \mathcal{K} is restricted to all L-bit strings with an even number of 1's.

Problem 5

Let (E, D) be a one-message secure cipher defined over $(K, \mathcal{M}, \mathcal{C})$, where $\mathcal{M} = \mathcal{C} = \{0, 1\}^L$. Which of the following encryption algorithms yields a one-message secure scheme? Either give an attack or provide a security proof.

۴

- 1. $E_1(k,m) := 0 \parallel E(k,m)$
- 2. $E_2(k,m) := E(k,m) \parallel \text{parity}(m)$
- 3. $E_3(k,m) := \text{reverse}(E(k,m))$
- 4. $E_4(k,m) := E(k, \text{reverse}(m))$