



## دانشکدهی علوم ریاضی

تحویل اصلی ۲۶ آبان ۱۴۰۲

مقدمهای بر رمزنگاری

تمرین: سری ۲

تحويل نهايي ٣ آذر

مدرّس: دکتر شهرام خزائی

- Upload your answers on courseware with the name: StudentNumber.pdf
- Upload a PDF file. Image and zip formats are not accepted.
- Similar answers will not be graded.
- NO answers will be accepted via e-mail.
- You can't upload files bigger than 1 Mb, so you'd better type.
- Deadline time is always at 23:55 and will not be extended.
- You should submit your answers before soft deadline.
- You will lose 5 percent for each day delay if you submit within a week after soft deadline.
- You can not submit any time after hard deadline.
- For any question contact Mohammad Amin Raeisi via m.aminra81@gmail.com.

#### Problem 1

- 1. Let  $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$  be a secure PRF (i.e. a PRF where the key space, input space, and output space are all  $\{0,1\}^n$ ). Which of the following are PRFs? (Prove or give a counter-example for your answers)
  - (a)  $F_1(k_1||k_2,x) := F(k_1,x) \oplus F(k_2,x)$
  - (b)  $F_2(k_1||k_2, x_1||x_2) := F(k_1, x_1) \oplus F(k_2, x_2)$
  - (c)  $F_3(k,x) := F(k,x) \oplus F(k,F(k,x))$
  - (d)  $F_4(k, x) := F(k, x) \oplus x$
  - (e)  $F_5(k,x) := F(0^n,x)||F(k,x)||$
- 2. Prove or disprove the following statement: if  $\mathsf{G}:\{0,1\}^n \to \{0,1\}^{2n}$  is a secure PRG then  $\mathsf{F}(k,x) := \mathsf{G}(k||x)$  is a secure PRF where F maps an n-bit key and an n-bit input into a 4n-bit output.

#### Problem 2

- 1. Let  $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$  be a secure PRF (i.e. a PRF where the key space and input space are  $\{0,1\}^n$  and the output space is  $\{0,1\}$ ). Construct a new PRF  $F': \{0,1\}^{n+1} \times \{0,1\}^n \to \{0,1\}$  such that if the adversary knows the last bit of the key, this function is no longer pseudorandom.
- 2. Assuming that pseudorandom functions exist, construct an encryption scheme that is multi-message secure but not CPA secure.

### Problem 3

Let  $F: \{0,1\}^n \times \{0,1\}^{3n} \to \{0,1\}^{3n}$  be a strong pseudorandom permutation. Prove that the following encryption scheme is CCA secure.

- To encrypt  $x \in \{0,1\}^n$  with key k, choose  $r \stackrel{R}{\leftarrow} \{0,1\}^n$ , and output  $F(k,x||r||0^n)$ .
- To decrypt  $y \in \{0,1\}^{3n}$ , first compute  $x||r||w = F^{-1}(k,y)$ . If  $w \neq 0^n$  then output  $\perp$ ; Otherwise, output x.

# Problem 4

Let  $\Pi=(\mathsf{Gen},\mathsf{Enc},\mathsf{Dec})$  be a CPA secure scheme. Prove that the scheme  $\Pi'=(\mathsf{Gen},\mathsf{Enc}',\mathsf{Dec}')$  such that  $\mathsf{Enc}'(k,m):=\mathsf{Enc}(k,\mathsf{Enc}(k,m))$  is also CPA secure.