d..él:)) f}.l.& Lgo,&;:;b

L;)KJ}A)J.)LS\MJ.EJ
o slad 1y el ML&WL:»

Sl 7S5 1 e

e This problem sets include 75 points.

o For any question contact Sara Sarfaraz via sarassm600gmail.com.

Problem 1

(10 points) Consider the following key-exchange protocol:

(a) Alice chooses a random key k£ and a random string 7 both of length n, and sends
s =k @ r to Bob.

(b) Bob chooses a random string t of length n and sends u = s @ t to Alice.

(c) Alice computes w = u @ r and sends w to Bob.

(d) Alice outputs k£ and Bob computes w & t.

Show that Alice and Bob output the same key. Analyze the security of the scheme
(i.e., either prove its security or show a concrete break).

Solution The statement below proves that Alice and Bob output the same key k:
Wht=uPrdt=sPterdt=sdr=kdredr==%k

Consider the key-exchange experiment:

1. Two parties holding 1" execute protocol. This results in a transcript trans containing
all the messages sent by the parties, and a key k output by each of the parties.

2. A uniform bit b € {0,1} is chosen. If b = 0 set k := k, and if b = 1 then choose
uniform k € {0,1}". A is given trans and k, and outputs a bit ¥'. The output of the
experiment is defined to be 1 if ' = b, and 0 otherwise. (In case KEG}(n) = 1, we
say that A succeeds.) The key exchange protocol II is called secure if for every PPT
adversary A there exists a negligible function negl such that

1
Pr[ty =b] < 3 + negl(n). We want to prove that the above protocol is not secure.
sbudw=(kodr)dkorot)e(kdreotedr) =k
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Consider the adversary A that works as follows: A computes &' = s @& u @ w. Then
outputs by = 0 if k& = £/, and b; = 1 otherwise. A wins the game if b = 0 and when

1
b = 1 the uniformly random key k; equals the real key k with probability o Since

1
Priky =klb=1] = on e compute:

Prby =b] =1 —Prlk; = k|b=1].Pr(b=1)=1—

it > negl(n) + 0.5

Problem 2

(20 Points) Prove that hardness of the CDH problem relative to G implies hardness of
the discrete-logarithm problem relative to G, and that hardness of the DDH problem
relative to G implies hardness of the CDH problem relative to G.

Solution Let (G,q,g) < G(1™), where G is a cyclic group of order ¢ with bit-size
llg]| = O(n) and g a generator of G. To prove that hardness of the CDH implies
hardness of the discrete-logarithm problem, we show that any algorithm that solves
the discrete-logarithm can be used to solve CDH. Let A be an arbitrary PPT algo-
rithm for the discrete-logarithm problem with respect to G, i.e., on input (G, q, g, g")
it outputs 2’ € Z, and wins the game if ' = . We construct an algorithm A’ for
CDH as follows: Given a CDH instance (G,q,g, 4% ¢¥), A" queries A on (G, q,g,g")
and receives ' € Z,. Then A’ computes(g¥)*. Clearly, A’ succeeds if and only if A
succeeds: (¢¥)* = DH,(g%,¢") <= a' = 2. Hardness of CDH relative to G now
implies that the success probability of every PPT algorithm — in particular that of A'—
is bounded by some negligible function negl(n). Thus, we get Pr[DLogag(n) = 1] =
PrlA'(G,q,9,9%, 9¥) = ¢*Y] < negl(n). To prove that CDH is harder than the DDH
problem, let A be an arbitrary PPT algorithm for CDH with respect to G, i.e., on
input (G, ¢, g, 9%, ¢¥) it outputs h € G and wins the game if h = DH,(¢%, ¢%) = ¢*¥. We
construct an algorithm A’ for DDH as follows: Given access to A and a DDH instance
(G,q,9,9%, 9", 1), where either h' = ¢"¥ or b/ = ¢* for a z € Z, chosen uniformly at
random, the algorithm A" queries A on (G, q, g, 9", ¢¥) and receives h. A’ outputs 1 if
h' = h and 0 else. Thus,

Pr[A(G,q,9,9%, 9", 9") = 1] = Pr[A(G,q,9,4%, ¢") = 9]
On the other hand,
1
PI‘[A/(G,(],g,gx,gy,gz) - 1] = .

Assuming that DDH is hard with respect to G, we get
| Pr[A'(G,q,9,9%, 9¥,9°) = 1] — PrlA(G,q, g,9% ¢¥, g*¥) = 1]| < negl(n). This implies

1
PrlA(G.0.9.97.9") = g™] < negl(n) + -,
which is negligible since ||¢|| = n. This proves hardness of CDH.
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Problem 3

(25 points) Consider the following variant of El Gamal encryption. Let p = 2¢ + 1,
let G be the group of squares modulo p(so G is a subgroup of Z; of order ¢), and let
g be a generator of G. The private key is (G, ¢, g, z) and the public key is (G, q, g, h),
where h = ¢* and x € Z, is chosen uniformly. To encrypt a message m € Z,;, choose a
uniform r € Z,, compute ¢; = g" mod p and ¢; = A" +m mod p, and let the ciphertext
be (c1,c2). Is this scheme CPA-secure? Prove your answer.

Solution This scheme is not secure. Consider an adversary .4 who chooses two random
plaintexts mg, m; € Z, and receives cipher text (ci, ¢2) from the challenger which is the
ciphertext corresponding to my, for b € {0,1}. We know that ¢y is not necessarily in G
as it equals to hY +m mod p and addition is not the action of G but

co —myp mod p = hY, hence we must have (c; —my mod p) € G.

We know that G includes half of the elements of Z;, so because m;_; is random we
have:

1
PI‘[(CQ — Mi—p mod p) c G] - 5

so the algorithm A does the following:

1. it first checks if (c; —my mod p) € G and (c; — mp mod p) € G. 2. if both of them
are True, then A outputs a random bit. Otherwise, if (¢ — mo mod p) € G it will
output 0 and if (¢ —my mod p) € G it will output 1. The probability of A winning is :

1 3
> —1==
Adv(A) > +3 1 1

DO | —

DO | —

So the advantage of A is non-negligible and the scheme is not secure.

Problem 4

(20 points) Consider the following public-key encryption scheme. The public key is
(G,q,9,h) and the private key is z, generated exactly as in the El Gamal encryption
scheme. In order to encrypt a bit b, the sender does the following:

e If b = 0 then choose a uniform y € Z, and compute ¢; = ¢¥ and c; = h¥. The
ciphertext is (c1, ¢a).

o If b =1 then choose independent uniform y, z € Z,, compute ¢; = ¢¥ and ¢, = ¢7,
and set the ciphertext equal to (¢, c2).

(a) Show that with high probability we can decrypt the ciphertext efficiently given
knowledge of x. Specifically, show how to decrypt a bit that is encrypted correctly.
(b) Prove that this encryption scheme is CPA-secure if the decision Diffie-Hellman
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problem is hard relative to G.

Solution A ciphertext (c;,c) can be decrypted as follows: Compute ¢f. If ¢o = ¢f,

then output 0, otherwise output 1. Decryption succeeds with all but negligible proba-

1
bility since for all z, r it holds Pr[¢g* = h¥] = Pr[z = xy] = —.

We can find the probability of decrypting the ciphertext correctly:

Pr[Dec(cy,¢3) =0|b=0)] = Pr[c] = lb=0]=1

Pr[Dec(ey,¢0) = 1|b = 1] = Pr[c] # co|b = 1]
1
=1—-Prlcf =|b=1] =1—Pr[¢g" = ¢°| :1_6

<§ < negl(n)

We now prove CPA-security of the above scheme II under the DDH assumption. Let
A be an adversary against the CPA-security of the scheme. We construct an adver-
sary A’ for DDH which uses A as a black-box. First, A" receives a DDH instance
(G,q,9,9%, 9%, h) where either h = ¢g** (if b = 0) or h = ¢* for z < Z, uniformly
random (if b = 1). A’ sends the public key pk := (G, q, g, ¢") to A. W.lLo.g., we assume
that A outputs the two messages my = 0 and m; = 1 (note, the message space is
{0,1}). Then A’ sends the challenge ciphertext ¢* := (¢*,h) to A. If b = 0, then ¢*
looks like a proper encryption of my, if b = 1, then ¢* is an encryption of m;. Thus,
upon receiving A’s guess v/, A" outputs v'. Assuming DDH is hard relative to G, we get

negl(n) > | Pr[A'(G,q,9,9%, 9", ¢"") = 1] — Pr[A(G, q,9,9%, ¢, g°) = 1]]
= |1 - Pr[A(G,q,9,9" ", 9" ) = 0] — Pr[A(G,q,9,9", 9", ¢°) = 1]| =
|1 — Pr[PubK{};(n) = 1|b = 0] — Pr[PubK{1;(n) = 1|b = 1]| = [1 — 2 Pr[PubK{1;(n) = 1]|

for a negligible function negl. This implies CPA-security of the scheme II:

1
Pr[PubK{r(n) = 1] < 5 + negl(n)



