
ریاضͬ علوم دانشͺده ی

رمزنگاری بر مقدمه ای

۵ شماره تمرین پاسخنامه
نیشابوری آیسان نگارنده:

• Upload your answers on courseware with the name: StudentNumber.pdf

• Upload a PDF file. Image and zip formats are not accepted.

• Similar answers will not be graded.

• NO answers will be accepted via e-mail.

• You can’t upload files bigger than 2 Mb, so you’d better type.

• Deadline time is always at 23:55 and will not be extended.

• You should submit your answers before soft deadline.

• You will lose 5 percent for each day delay if you submit within a week after soft
deadline.

• You can not submit any time after hard deadline.

• This problem set includes 55 points.

• For any question contact Aysan Nishaburi via aysannishaburi@gmail.com.

١ ‐۵

aysannishaburi@gmail.com

Problem 1
For many block cipher encryption modes such as CBC mode, messages need to be a
multiple of the block size. Messages that are not a multiple of the block size can still be
encrypted, but need to be padded to a multiple of the block size. The padding moreover
needs to be reversible so that the receiver can recover the original (unpadded) message
when decrypting. For each of the following padding schemes, decide if the padding is
reversible: that is, for any message, after padding to a multiple of the block length, it
is possible to recover the message again. If the padding is reversible, explain how to
recover the message and why recovery is guaranteed to work. If not, explain how it fails.

1. (5 Points) Null Padding: Append 0’s to the message until it is a multiple of
the block length

Solution:
This padding is not reversible because if the block length is b and we show a
sequence of b zeroes with 0b, the two messages m0 = 0b+1 and m1 = 0b+2 are both
padded to the message 02b. So the function from unpadded messages to padded
messages is not an injection and thus not reversible.

2. (5 Points) Bit Padding, version 1: Let N be the number of bits necessary to
add to the message for it to become a multiple of the block length. If N > 0,
append 10N−1 (that is, a 1 followed by N − 1 0’s) to the message. If N = 0 (the
message is already a multiple of the block length), do nothing.

Solution:
This padding is not reversible because the two messages m0 = 0b||1 and m1 =
0b||1||0b−1 are both padded to the message 0b||1||0b−1. So the function from un-
padded messages to padded messages is not an injection and thus not reversible.

3. (5 Points) Bit Padding, version 2: This is the same as part 2, except that
in the case N = 0, we append an entire block, set to 10B−1, where B is the block
length in bits.

Solution:
Let the function from any unpadded message m to the padded version m′ be f ,
where f(m) = m′. We know that for any message m, f(m) is m concat with one
1 and a number of zeroes, so f(m) has the form of m||1||0k where k ≥ 0. So to
recover m it suffices to remove bits from the right side of f(m) until we remove
a bit that is equal to 1. So f is reversible.

٢ ‐۵

4. (5 Points) PKCS7 Padding: Assume the message is an integer number of bytes,
but not an integer number of blocks. Let N be the number of bytes necessary
to pad to a multiple of the block length. If N = 0 (which means the message
is already a multiple of the block length) let N be equal to the block length (in
bytes). Now pad with N bytes, each byte set to the value N . For example, if
N = 3, append 3 bytes to the message, each byte set to 00000011.

Solution:
Let the function from any unpadded message m to the padded version m′ be g,
where g(m) = m′. We know that for any message m, the last byte of g(m) is the
number of bytes added to the right side of m to pad it. So to recover any m from
g(m) where the last byte of g(m) is the number N , it suffices to remove the N
rightmost bytes of g(m). So g is reversible.

5. (5 Points) PKCS7 padding, except that if the message is already a multiple of
the block length, do not add any padding.

Solution:
This padding is not reversible because if the block length is b, the two messages
m0 = 0b−8 and m1 = 0b−8||1||07 are both padded to the message 0b−8||1||07. So
the function from unpadded messages to padded messages is not an injection and
thus not reversible.

Problem 2
(30 Points) Let h be a collision-resistant hash-function.

1. Consider

h0
s(x) =

{
hs(x)||1 if x1 = 0

0|hs(x)|+1 otherwise
(1)

h1
s(x) =

{
hs(x)||1 if x1 = 1

0|hs(x)|+1 otherwise
(2)

ĥs(x) = h0
s(x)||h1

s(x)

Prove that ĥ is collision-resistant.

Solution:
We prove that every collision of ĥ is also a collision of h implying ĥ is collision-
resistant.
Imagine there are x ̸= y where ĥ(x) = ĥ(y). We claim that x1 is equal to y1

٣ ‐۵

because if it is not so we can assume without loss of generality that x1 = 0 and
y1 = 1 but we have

ĥ(x) = h0
s(x)||h1

s(x) = hs(x)||1||0|hs(x)|+1

ĥ(y) = h0
s(y)||h1

s(y) = 0|hs(y)|+1||hs(y)||1

which are not equal since ĥ(x) ends with 0 whereas ĥ(y) ends with 1.
So we assume x1 = y1 = 0 (the case that x1 = y1 = 1 is similarly proven) therefore
we have

ĥ(x) = h0
s(x)||h1

s(x) = 0|hs(x)|+1||hs(x)||1 = ĥ(y) = h0
s(y)||h1

s(y) = 0|hs(y)|+1||hs(y)||1

which implies hs(x) = hs(y) and that we have found a collision for h.

2. Now let
ha
s(x) := hs(x)1...hs(x)⌈ |hs(x)|2 ⌉

hb
s(x) := hs(x)⌈ |hs(x)|2 ⌉+1

...hs(x)|hs(x)|

where the ith bit of a string x is denoted by xi. Prove or disprove: At least one
of ha

s and hb
s is collision resistant.

Solution:
This is not true since we can instantiate h with the function ĥ described in part
1 and ha

s and hb
s will respectively be h0

s and h1
s and so we have disproven the

sentence in question since neither h0
s nor h1

s is collision resistant, because h0
s maps

every x with x1 of 0 to 0|hs(x)|+1 and h1
s does so with every x with ciphertextthe

x1 of 1.

3. Answer part 2 in the case that the output of ha
s and hb

s is equal for every input
x. Prove your answer.

Solution:
In the case that for every x, it holds that ha

s(x) = hb
s(x), we show that ha

s and hb
s

both are collision resistant. Assuming a collision for ha
s where for some x and y

that x ̸= y we have ha
s(x) = ha

s(y) we will also have

h(x) = ha
s(x)||hb

s(x) = ha
s(x)||ha

s(x) = ha
s(y)||ha

s(y) = ha
s(y)||hb

s(y) = h(y)

which means any collision for ha
s is a collision for h so ha

s has to be collision
resistant (and the same goes for hb

s).

۴ ‐۵

Problem 3
(30 Points) Let (E,D) be an encryption system that provides authenticated encryption.
Here E does not take a nonce as input and therefore must be a randomized encryption
algorithm. Which of the following systems provide authenticated encryption? For those
that do explain why. For those that do not, present an attack that either breaks CPA
security or ciphertext integrity.

1. E1(k,m) = [c← E(k,m), outputs (c, c)] and D1(k, (c1, c2)) = D(k, c1)

Solution:
This system does not have ciphertext integrity. We describe the attacker A1

such that A1 sends an arbitrary m to the challenger and receives (c, c) where
E(k,m) = c. Then A1 sends the ciphertext (c, 0|c|) to the challenger and since
D1(k, (c, 0

|c|)) = D(k, c) = m the challenger will accept (c, 0|c|) if and only if
(c, 0|c|) ̸= (c, c). So we will have

Pr[PrivKCI
A1

= 1] = 1− Pr[E(k,m) = 0|c|] = 1− 1

|C|

which is non negligible.

2. E2(k,m) = (E(k,m), E(k,m)) and D2(k, (c1, c2)) =

{
D(k, c1) if D(k, c1) = D(k, c2)

⊥ otherwise
To clarify: E(k,m) is randomized so that running it twice on the same input will
result in different outputs with high probability.

Solution:
This system does not have ciphertext integrity. We describe the attacker A2

such that A2 sends an arbitrary m to the challenger and receives (c1, c2) where
E(k,m) = c1 and E(k,m) = c2. Then A2 sends m to the challenger again and
receives (c3, c4) where E(k,m) = c3 and E(k,m) = c4. Now A2 sends the ci-
phertext (c1, c4) to the challenger and since D(k, c1) = D(k, c4) = m and so
D2(k, (c1, c4)) = m the challenger will accept (c1, c4) if and only if (c1, c4) ̸= (c1, c2)
and (c1, c4) ̸= (c3, c4) and so we have

Pr[PrivKCI
A2

= 1] = 1−Pr[c4 = c2∪c1 = c3] ≥ 1−Pr[c4 = c2]−Pr[c1 = c3] = 1− 2

|C|

which is non negligible.

3. E3(k,m) = (E(k,m), H(m)) and D3(k, (c1, c2)) =

{
D(k, c1) if H(D(k, c1)) = c2

⊥ otherwise
where H is a collision resistant hash function.

۵ ‐۵

Solution:
This system does not provide CPA security. We describe the attacker A3 as fol-
lows. It sends two arbitrary messages such as m0 and m1 such that m0 ̸= m1 to
the challenger and in return receives (E(k,mb), H(mb)). Then A3 can indepen-
dently compute H(m0) and output 0 if (E(k,mb), H(mb)) ends with H(m0) and
output 1 otherwise. So the advantage of this attacker is∣∣∣Pr [outA3(PrivKeav

A3,Π
(n, 0)) = 1]− Pr [outA3(PrivKeav

A3,Π
(n, 1)) = 1]

∣∣∣ =
|Pr[H(m0) = H(m1)]− 1| = 1− Pr[H(m0) = H(m1)]

which is non negligible since Pr[H(m0) = H(m1)] is negligible because H is colli-
sion resistant.

Problem 4 (Optional)
Let h : {0, 1}∗ → {0, 1}n be a hash function constructed by iterating a collision resistant
compression function using the Merkle-Damgard construction below. The idea is to
split the message M into blocks of constant length

M = M1||M2||...||Mk

and to process these blocks along with the intermediate hash values

H1, ..., Hk−1

through the compression function f . Hk is the hash value of M , that is h(M) = Hk.

M1 M2
... Mk

fIV f
H1

f
...

f
Hk−1

Hk

1. (5 Bonus Points) Show that defining MACk(M) = h(k||M) results in an insecure
MAC. That is, show that given a valid text/MAC pair (M,H) one can efficiently
construct another valid text/MAC pair (M ′, H ′) without knowing the key k. As-
sume for simplicity that the key length is the same as the length of the message
block.

Solution:
The structure of the Merkle-Damgard scheme described implies that

h(k||x||y) = f(h(k||x), y)

۶ ‐۵

where the length of x and y is equal to the length of the message block.
So given the text x and the MAC value MACk(x) = h(k||x), the adversary A
can choose an arbitrary y (which has the same length as the message block)
and compute f(MACk(x), y) = f(h(k||x), y) (since f is publicly known) which
is MACk(x||y). So the adversary has constructed the text/MAC pair x||y and
MACk(x||y).

2. (15 Bonus Points) Show that appending the secret key k, that is defining MACk(M) =
h(M ||k) results in a MAC that isn’t collision resistant.
Recall that by definition the property of being collision resistant for MAC means
that finding two messages x ̸= x′ such that

MACk(x) = MACk(x
′),

implies the computational effort of 2n operations, where n is the size of MAC
(and hash). Describe an attack (based on the Merkle-Damgard structure above)
that uses less than 2n operations to create the MAC forgery, a legitimate MAC
value for some message x without revealing the key k.

Solution:
We can use the birthday attack in this construction, such that we create n

2
differ-

ent messages such as M1,M2, ...,Mn
2

with the same length. The birthday paradox
implies that since the function h has 2n possible outcomes and we have

√
2n = 2

n
2

messages then with the probability of roughly 1
2

we have a pair Mi and Mj such
that Mi ̸= Mj but h(Mi) = h(Mj). Then

MACk(Mi) = h(Mi||k) = f(h(Mi), k) = f(h(Mj), k) = h(Mj||k) = MACk(Mj)

So an adversary such as B can ask the challenger for the MAC value of Mi and
given the text/MAC pair Mi and MACk(Mi) = MACk(Mj) output the valid
text/MAC pair Mj and MACk(Mj) = MACk(Mi).

٧ ‐۵

