Game Theory - Week 7

Mojtaba Tefagh

Sharif University of Technology

mtefagh@sharif.edu

February 15, 2023

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Mojtaba Tefagh

Overview

- Bayesian Games: Taste
- Bayesian Games: First Definition
- Bayesian Games: Second Definition
- Analyzing Bayesian Games
- Analyzing Bayesian Games: Another Example

Bayesian Games: Taste

Auctions



Tea Auction, Melbourne, Australia, 1885.

Used under a Creative Commons license; copyright State Library of Victoria Collections. http://www.flickr.com/photos/statelibraryofvictoria_collections/5691393113

Mojtaba Tefagh

Bayesian Games: Taste

Auctions

A silent auction. Looks suspiciously like a game.

Used under a Creative Commons license; copyright Paul Lowry. http://www.flickr.com/photos/paul_lowry/7044646575

Mojtaba Tefagh

э

< 注入 < 注入 -

Introduction

- So far, we've assumed that all players know what game is being played. Everyone knows:
 - the number of players
 - the actions available to each player
 - the payoff associated with each action vector
- Why is this true in imperfect information games?

Introduction

- So far, we've assumed that all players know what game is being played. Everyone knows:
 - the number of players
 - the actions available to each player
 - the payoff associated with each action vector
- Why is this true in imperfect information games?

Now we'll relax this. We'll still assume:

- 1. All possible games have the same number of agents and the same strategy space for each agent; differing only in payoffs.
- Agents' beliefs are posteriors, obtained by conditioning a common prior on individual private signals.

Definition I : Information Sets

 Bayesian game: a set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

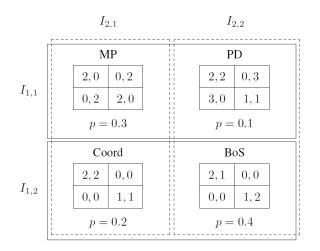
Definition (Bayesian Game: Information Sets)

- A Bayesian game is a tuple (N, G, P, I) where
 - N is a set of agents,
 - G is a set of games with N agents each such that if $g, g' \in G$ then for each agent $i \in N$ the strategy space in g is identical to the strategy space in g',
 - $P \in \Pi(G)$ is a common prior over games, where $\Pi(G)$ is the set of all probability distributions over G, and

• $I = (I_1, \dots, I_N)$ is a set of partitions of G, one for each agent.

Bayesian Games: First Definition

Definition I: Example



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Mojtaba Tefagh

SUT

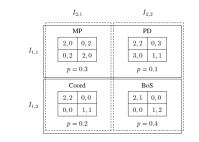
Definition 2: Epistemic Types

Directly represent uncertainty over utility function using the notion of **epistemic type**.

Definition

- A Bayesian game is a tuple (N, A, Θ, p, u) where
 - N is a set of agents,
 - $\blacksquare \ A = (A_1, \ldots, A_n),$ where A_i is the set of actions available to player i,
 - $\blacksquare~\Theta=(\Theta_1,\ldots,\Theta_n),$ where Θ_i is the type space of player $i\!\!,$
 - $p: \Theta \rightarrow [0,1]$ is the common prior over types,
 - $u=(u_1,\ldots,u_n),$ where $u_i:A{\times}\Theta\to\mathbb{R}$ is the utility function for player i.

Definition 2: Example



	a_2	θ_1	θ_2	u_1	u_2	a	$_{1}$ a_{2}	θ_1	θ_2	u_1	
	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0	C) L	$\theta_{1,1}$	$\theta_{2,1}$	0	
	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2	C) L	$\theta_{1,1}$	$\theta_{2,2}$	3	
	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2	C) L	$\theta_{1,2}$	$\theta_{2,1}$	0	
J	L	$\theta_{1,2}$	$\theta_{2,2}$	2	- I	C) L	$\theta_{1,2}$	$\theta_{2,2}$	0	
J	R	$\theta_{1,1}$	$\theta_{2,1}$	0	2	C	D R	$\theta_{1,1}$	$\theta_{2,1}$	2	
U	R	$\theta_{1,1}$	$\theta_{2,2}$	0	3	C	D R	$\theta_{1,1}$	$\theta_{2,2}$	1	
U	R	$\theta_{1,2}$	$\theta_{2,1}$	0	0	C	D R	$\theta_{1,2}$	$\theta_{2,1}$	1	
J	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0	C	D R	$\theta_{1,2}$	$\theta_{2,2}$	1	

E 900

Mojtaba Tefagh

A plan of action for each player as a function of types that maximize each type's expected utility:

A plan of action for each player as a function of types that maximize each type's expected utility:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

expecting over the actions of other players,

Mojtaba Tefagh

 A plan of action for each player as a function of types that maximize each type's expected utility:

- expecting over the actions of other players,
- expecting over the types of other players.

Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, strategies are defined as follows:

Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, strategies are defined as follows:

- **Pure strategy**: $s_i : \Theta_i \mapsto A_i$
 - a choice of a pure action for player i as a function of his or her type.

Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, strategies are defined as follows:

- **Pure strategy**: $s_i : \Theta_i \mapsto A_i$
 - a choice of a pure action for player i as a function of his or her type.
- Mix strategy: $s_i : \Theta_i \mapsto \Pi(A_i)$
 - a choice of a mixed action for player i as a function of his or her type.

Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, strategies are defined as follows:

- **Pure strategy**: $s_i : \Theta_i \mapsto A_i$
 - a choice of a pure action for player i as a function of his or her type.
- Mix strategy: $s_i : \Theta_i \mapsto \Pi(A_i)$
 - a choice of a mixed action for player i as a function of his or her type.
- $\bullet \ s_i : (a_i \mid \theta_i)$
 - the probability under mixed strategy s_i : that agent *i* plays action a_i , given that *i*'s type is θ_i .

Expected Utility

Three standard notions of expected utility:

Expected Utility

Three standard notions of expected utility:

- ex-ante
 - the agent knows nothing about anyone's actual type;

interim

 an agent knows her own type but not the types of the other agents;

Expected Utility

Three standard notions of expected utility:

- ex-ante
 - the agent knows nothing about anyone's actual type;

interim

 an agent knows her own type but not the types of the other agents;

ex-post

the agent knows all agents' types.

Interim expected utility

 Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, i's interim expected utility with respect to type θ_i and a mixed strategy profile s is

$$EU_i(s \mid \! \theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i} \mid \! \theta_i) \sum_{a \in A} \bigg(\prod_{j \in N} s_j(a_j \mid \! \theta_j) \bigg) u_i(a, \theta_i, \theta_{-i}).$$

Interim expected utility

 Given a Bayesian game (N, A, Θ, p, u) with finite sets of players, actions, and types, i's interim expected utility with respect to type θ_i and a mixed strategy profile s is

$$EU_i(s \mid \! \theta_i) = \sum_{\theta_{-i} \in \Theta_{-i}} p(\theta_{-i} \mid \! \theta_i) \sum_{a \in A} \bigg(\prod_{j \in N} s_j(a_j \mid \! \theta_j) \bigg) u_i(a, \theta_i, \theta_{-i}).$$

i's ex ante expected utility with respect to a mixed strategy profile s is

$$EU_i(s) = \sum_{\theta_i \in \Theta_i} p(\theta_i) EU_i(s \mid \theta_i)$$

Bayesian Equilibrium or Bayes-Nash equilibrium

A Bayesian equilibrium is a mixed strategy profile s that satisfies

$$s_i \in \arg\max_{s_i'} EU_i(s_i^{'}, s_{-i} | \boldsymbol{\theta}_i)$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

for each *i* and $\theta_i \in \Theta_i$.

Bayesian Equilibrium or Bayes-Nash equilibrium

A Bayesian equilibrium is a mixed strategy profile s that satisfies

$$s_i \in \arg\max_{s_i'} EU_i(s_i^{'}, s_{-i} | \boldsymbol{\theta}_i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

for each i and $\theta_i \in \Theta_i$.

The above is defined based on interim maximization. It is equivalent to an ex ante formulation:

Bayesian Equilibrium or Bayes-Nash equilibrium

A Bayesian equilibrium is a mixed strategy profile s that satisfies

$$s_i \in \arg\max_{s_i'} EU_i(s_i^{'}, s_{-i} | \boldsymbol{\theta}_i)$$

for each i and $\theta_i \in \Theta_i$.

The above is defined based on interim maximization. It is equivalent to an ex ante formulation:

If $p(\theta_i)>0$ for all $\theta_i\in\Theta_i,$ then this is equivalent to requiring that

$$s_i \in \arg\max_{s'_i} EU_i(s'_i, s_{-i}) = \arg\max_{s'_i} \sum_{\theta_i} p(\theta_i) EU_i(s'_i, s_{-i} | \theta_i)$$

for each *i*.

Mojtaba Tefagh

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Explicitly models behavior in an uncertain environment
- Players choose strategies to maximize their payoffs in response to others accounting for:
 - strategic uncertainty about how others will play and
 - payoff uncertainty about the value to their actions.

 A plan of action for each player as a function of types that maximize each type's expected utility:

A plan of action for each player as a function of types that maximize each type's expected utility:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

expecting over the actions of other players,

A plan of action for each player as a function of types that maximize each type's expected utility:

- expecting over the actions of other players,
- expecting over the types of other players.

A Sheriff's Dilemma

A sheriff is faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

◆□ > ◆□ > ◆臣 > ◆臣 > □ □ ○ ○ ○

A Sheriff's Dilemma

A sheriff is faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

• the suspect is either a criminal with probability p or not with probability 1 - p.

A Sheriff's Dilemma

A sheriff is faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

- the suspect is either a criminal with probability p or not with probability 1 p.
- the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.
- the criminal would rather shoot even if the sheriff does not, as the criminal would be caught if does not shoot.
- the innocent suspect would rather not shoot even if the sheriff shoots.

Analyzing Bayesian Games: Another Example

A Sheriff's Dilemma

Sheriff

Good	Shoot	Not
Shoot	-3, -1	-1, -2
Not	-2, -1	0, 0

Bad	Shoot	Not
Shoot	0, 0	2, -2
Not	-2, -1	-1, 1

Mojtaba Tefagh

Summary: Bayesian (Nash) Equilibrium

- Explicitly models behavior in an uncertain environment
- Players choose strategies to maximize their payoffs in response to others accounting for:

- strategic uncertainty about how others will play and
- payoff uncertainty about the value to their actions.