Game Theory - Week 3

Mojtaba Tefagh

Sharif University of Technology

mtefagh@sharif.edu

December 13, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Mojtaba Tefagh

Overview

- Strictly Dominated Strategies & Iterative Removal
- Dominated Strategies & Iterative Removal: An Application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- Maxmin Strategies
- Correlated Equilibrium

Mojtaba Tefagh

Rationality

- A basic premise: players maximize their payoffs
- What if all players know this?
- And they know that other players know it?
- And they know that other players know that they know it?

Mojtaba Tefagh

....

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Strictly Dominated Strategies

- A strictly dominated strategy can never be a best reply.
- Let us remove it as it will not be played.
- All players know this so let us iterate...
- Running this process to termination is called the iterated removal of strictly dominated strategies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Strictly Dominated Strategies (Definitions)

Definition (Strictly Dominated Strategies)

A strategy $s_i \in S_i$ is strictly dominated by $s'_i \in S_i$ (strategy profile $S = (s_1, ..., s_n)$) if

$$u_i(s_i, s_{-i}) < u_i(s'_i, s_{-i}) \qquad \forall s_{-i} \in S_{-i}$$

	L	С	R
U	3,0	2, 1	0,0
М	1, 1	1,1	5,0
D	0,1	4,2	0,1

	L	С	R
U	3,0	2, 1	0,0
М	1, 1	1,1	5,0
D	0,1	4,2	0,1

R is strictly dominated by C

・ロン ・四 と ・ ヨ と ・ ヨ

	L	С
U	3,0	2, 1
М	1, 1	1, 1
D	0, 1	4,2

	L	С
U	3,0	2, 1
М	1,1	1,1
D	0,1	4,2

M is strictly dominated by U

	L	С
U	3,0	2,1
D	0,1	4,2

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Mojtaba Tefagh

	L	С
U	3,0	2,1
D	0,1	4,2

イロン イロン イヨン イヨン

• L is strictly dominated by C

	С	
U	2,1	
D	4,2	

Mojtaba Tefagh

	С	
U	2,1	
D	4,2	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

U is strictly dominated by D

	L	С	R
U	3,0	2, 1	0,0
М	1, 1	1, 1	5,0
D	0,1	4,2	0,1

	L	С	R
U	3,0	2, 1	0,0
М	1, 1	1, 1	5,0
D	0,1	4,2	0,1

A unique Nash equilibrium C, D

	L	С	R
U	3,1	0,1	0,0
М	1, 1	1,1	5,0
D	0,1	4,1	0,0

	L	С	R
U	3,1	0, 1	0,0
М	1, 1	1,1	5,0
D	0,1	4,1	0,0

R is dominated by L or C

	L	С
U	3,1	0,1
М	1, 1	1, 1
D	0,1	4,1

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Mojtaba Tefagh

	L	С
U	3,1	0,1
М	1, 1	1,1
D	0,1	4,1

 M is dominated by the mixed strategy that selects U and D with equal probability.

	L	С
U	3,1	0,1
М	1, 1	1,1
D	0,1	4,1

- M is dominated by the mixed strategy that selects U and D with equal probability.
- Can use mixed strategies to define domination too!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

	L	С
U	3,1	0,1
D	0,1	4,1

イロン イロン イヨン イヨン

э

Mojtaba Tefagh

	L	С
U	3,1	0,1
D	0,1	4,1

- No other strategies are strictly dominated.
- What are the Nash Equilibria?

イロト 不得 トイヨト イヨト

Iterated Removal of Strictly Dominated Strategies

This process preserves Nash equilibria

- It can be used as a preprocessing step before computing an equilibrium
- Some games are solvable using this technique those games are dominance solvable

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

Iterated Removal of Strictly Dominated Strategies

This process preserves Nash equilibria

- It can be used as a preprocessing step before computing an equilibrium
- Some games are solvable using this technique those games are dominance solvable

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

- What about the order of removal when there are multiple strictly dominated strategies?
 - doesn't matter

Weakly Dominated Strategies

Definition

A strategy $s_i \in S_i$ is weakly dominated by $s'_i \in S_i$ if $u_i(s_i, s_{-i}) \le u_i(s'_i, s_{-i})$ for all $s_{-i} \in S_{-i}$, and $u_i(s_i, s_{-i}) < u_i(s'_i, s_{-i})$ for some $s_{-i} \in S_{-i}$

Can remove them iteratively too, but:

Weakly Dominated Strategies

- They can be best replies.
- Order of removal can matter.
- At least one equilibrium preserved.

First-price Auction

- You have cool \$50 million With all this cash on hand.
- An auction house is selling an Andy Warhol piece.
- The rules are that all interested parties must submit a written bid and whoever submits the highest bid wins the Warhol piece and pays a price equal to the bid. This known as the first-price auction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

- The Warhol piece is worth \$400,000 to you.
- You've just learned that there is only one other bidder: your old college friend.
- The Warhol piece is worth \$300,000 to your college, and furthermore.
- The auctioneer announces that bids must be in increments of \$100,000 and that the minimum bid is \$100,000 and the maximum bid is \$500,000.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

- If the bids are equal, the auctioneer flips a coin to determine the winner (payoffs are in hundreds of thousands of dollar).
- For example, if you bid 3 and she bids 1, then you win the auction, pay a price of 3, and receive a payoff of 1 (=4-3).
- If you both bid 1, then you have a 50% chance of being the winner- in which case your payoff is 3 (from paying a price of 1)—and a 50% chance that you're not the winner- in which case your payoff is zero; the expected payoff is then ³/₂.

	1	2	3	4	5
1	$\frac{3}{2}, 1$	<mark>0</mark> ,1	<mark>0</mark> ,0	<mark>0</mark> ,-1	<mark>0</mark> ,-2
2	2,0	$1, \frac{1}{2}$	<mark>0</mark> ,0	<mark>0</mark> ,-1	<mark>0</mark> ,-2
3	1,0	1,0	$\frac{1}{2}, 0$	0,-1	<mark>0</mark> ,-2
4	0,0	0,0	0,0	$0, -\frac{1}{2}$	<mark>0</mark> ,-2
5	<u>-1</u> ,0	<u>-1</u> ,0	-1 ,0	-1,0	$-\frac{1}{2},-1$

Table: The strategic form of the first-price auction

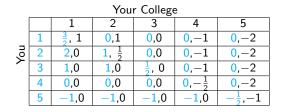
イロト 不得 トイヨト イヨト

- Bidding 5 is strictly dominated by bidding 4. clearly you don't want to bid that much.
- You probably don't want to bid 4 since that is weakly dominated by any lower bid.

	Your College					
		1	2	3	4	5
	1	$\frac{3}{2}$, 1	<mark>0</mark> ,1	0,0	<mark>0</mark> ,-1	<mark>0</mark> ,-2
You	2	2,0	$1, \frac{1}{2}$	0,0	<mark>0</mark> ,-1	<mark>0</mark> ,-2
	3	1,0	<mark>1</mark> ,0	$\frac{1}{2}, 0$	<mark>0</mark> ,-1	<mark>0</mark> ,-2
	4	0,0	0,0	0,0	$0, -\frac{1}{2}$	<mark>0</mark> ,-2
	5	-1,0	<u>-1</u> ,0	-1,0	<u>-1</u> ,0	$-\frac{1}{2},-1$

Table: The strategic form of the first-price auction

- The minimum bid of 1 is also weakly dominated.
- We eliminat bids 1, 4 and 5 because they are either strictly or weakly dominated.
- Can we say more? Unfortunately, no



Either a bid of 2 or 3 may be best, depending on what the other bidder submits.

3

Summary: Iterative Strict and Rationality

- Players maximize their payoffs.
 - They don't play strictly dominated strategies
 - They don't play strictly dominated strategies, given what remains...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

- Nash equilibria are a subset of what remains
- Do we see such behavior in reality?

Feeding Behavior among Pigs and Iterated Strict Dominance

- Experiment by B.A. Baldwin and G.B. Meese (1979) "Social Behavior in Pigs Studied by Means of Operant Conditioning," Animal Behavior, Vol 27, pp 947-957. (See also J. Harrington (2011) Games, Strategies and Decision Making, Worth Publishers).
- Two pigs in cage, one is larger: "dominant" (sorry for the terminology...).
- Need to press a lever to get food to arive
- Food and lever are at opposite sides of cage
- Run to press and the other pig gets the food...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Feeding Behavior among Pigs and Iterated Strict Dominance

- 10 units of food- the typical split:
 - if large gets to food first, then 1,9 split (1 for small, 9 for large),
 - if small gets to food first then 4, 6 split,
 - if they get to food at the same time then 3, 7 split,
 - Pressing the lever costs 2 units of food in energy

Small/Large	Press	Wait
Press	1,5	-1,9
Wait	4,4	0,0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Dominated Strategies & Iterative Removal: An Application

Let us solve via iterative elimination of strictly dominated strategies

Small/Large	Press	Wait
Press	1,5	-1,9
Wait	4,4	0,0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mojtaba Tefagh

Pigs Behavior: Frequency of pushing the lever per 15 minutes, after ten tests (learning...) Baldwin and Meese (1979)

- Experiment was devised by Bladwin and Meese.
- It has two domestic pigs:
 - One is the dominate & the other is the subordinate.
 - Which pig will press the lever and run and which will be sitting by the food?

	Alone	Together
LargePigs	75	105
SmallPigs	70	5

Iterative Strict Dominance

- Are pigs rational? Do they know game theory?
- They do seem to learn and respond to incentives
- Learn not to play a strictly dominated strategy ...
- Learn not to play a strictly dominated strategies out of what remains...
- Learning, evolution, and survival of the fittest: powerful game theory tools

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

- Player i's maxmin strategy is a strategy that maximizes i's worst-case payoff, in the situation where all the other players (whom we denote -i) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player *i* is arg $max_{s_i}min_{s_{-i}}u_i$ (s_i, s_{-i}), and the maxmin value for player *i* is $max_{s_i}min_{s_{-i}}u_i$ (s_i, s_{-i})

Why would i want to play a maxmin strategy?

- Player i's maxmin strategy is a strategy that maximizes i's worst-case payoff, in the situation where all the other players (whom we denote -i) happen to play the strategies which cause the greatest harm to i.
- The maxmin value (or safety level) of the game for player i is that minimum payoff guaranteed by a maxmin strategy.

Definition (Maxmin)

The maxmin strategy for player *i* is arg $max_{s_i}min_{s_{-i}}u_i$ (s_i, s_{-i}), and the maxmin value for player *i* is $max_{s_i}min_{s_{-i}}u_i$ (s_i, s_{-i})

- Why would i want to play a maxmin strategy?
 - a conservative agent maximizing worst-case payoff
 - paranoid agent who believes everyone is out to get him

Minmax Strategies

Player i's minmax strategy against player -i in a 2-player game is a strategy that minimizes -i's best-case payoff, and the minmax value for i against -i is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player *i* against player -i is arg $min_{s_i}max_{s_{-i}}u_{-i}$ (s_i, s_{-i}), and player -i's minmax value is $min_{s_i}max_{s_{-i}}u_{-i}$ (s_i, s_{-i}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Why would i want to play a minmax strategy?

Minmax Strategies

Player i's minmax strategy against player -i in a 2-player game is a strategy that minimizes -i's best-case payoff, and the minmax value for i against -i is payoff.

Definition (Minmax, 2-player)

In a two-player game, the minmax strategy for player *i* against player -i is arg $min_{s_i}max_{s_{-i}}u_{-i}$ (s_i, s_{-i}), and player -i's minmax value is $min_{s_i}max_{s_{-i}}u_{-i}$ (s_i, s_{-i}).

- Why would i want to play a minmax strategy?
 - to punish the other agent as much as possible

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.

<ロ> <四> <四> <四> <三</p>

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- 1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
- 2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Minmax Theorem

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- 1. Each player's maxmin value is equal to his minmax value. The maxmin value for player 1 is called the value of the game.
- 2. For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- 3. Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium. Furthermore, these are all the Nash equilibria. Consequently, all Nash equilibria have the same payoff vector (namely, those in which player 1 gets the value of the game).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

Minmax Theorem (cont'd)

Theorem (Minmax, von Neumann, 1928)

In any finite, 2-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

Proof:

We consider a game with two players.

- ✓ Player 1 make choice $k \in \{1, ..., n\}$ & Palyer 2 make choice $l \in \{1, ..., m\}$
- ✓ Player 1 then makes a payment of P_{kl} to Player 2 where $P \in R^{n \times m}$ is payoff matrix for game.
- The goal of player 1 is to make the payment as small as possible, while the goal of player 2 is to maximize it.
- The players use randomized or mixed strategies

 $prob(k = i) = u_i, \quad i = 1, ..., n \& prob(l = i) = v_i \quad i = 1, ..., m$

- ✓ The expected payoff from player 1 to player 2 is $\sum_{k=1}^{n} \sum_{l=1}^{m} u_k v_l P_{kl}$
- Player 1 wishes to choose u to minimize $u^T P v$, while player 2 wishes to choose v to maximize $u^T P v$.

$$\begin{array}{lll} \checkmark & \dots & \\ & \text{minimize} & \max_{i=1,\dots,m} (P^T u)_i = \max_{i=1,\dots,n} (P^T v)_i \\ & \text{s.t.} & u \succeq 0, \quad 1^T u = 1 & \text{s.t.} & v \succeq 0, \quad 1^T v = 1 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ◇○○

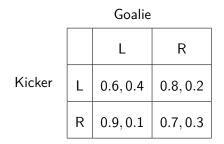
2×2 Zero-sum Games

 Minmax or maxmin produces the same result as method for finding NE in general 2 × 2 games;

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Check against penalty kick game.

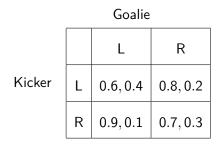
Penalty Kick Game



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How does the kicker maximize his minimum?

Penalty Kick Game



• How does the kicker maximize his minimum?

 $\max_{s_1} \min_{s_2} [s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7]$

Penalty Kick Game (cont'd)

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• What is his minimum?

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is his minimum?

$$\begin{split} \min_{s_2} & \left[s_1(L) s_2(L) \times 0.6 + s_1(L) s_2(R) \times 0.8 + s_1(R) s_2(L) \times 0.9 + s_1(R) s_2(R) \times 0.7 \right] \\ &= \min_{s_2} \begin{bmatrix} s_1(L) s_2(L) \times 0.6 + s_1(L) (1 - s_2(L)) \times 0.8 + (1 - s_1(L)) s_2(L) \times \\ 0.9 + (1 - s_1(L)) (1 - s_2(L)) \times 0.7 \end{bmatrix} \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is his minimum?

$$\begin{split} \min_{s_2} & [s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7] \\ &= \min_{s_2} \begin{bmatrix} s_1(L)s_2(L) \times 0.6 + s_1(L)(1 - s_2(L)) \times 0.8 + (1 - s_1(L))s_2(L) \times \\ & 0.9 + (1 - s_1(L))(1 - s_2(L)) \times 0.7 \end{bmatrix} \\ &= \min_{s_2} [(0.2 - s_1(L) \times 0.4) \times s_2(L) + (0.7 + s_1(L) \times 0.1)] \end{split}$$

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is his minimum?

$$\begin{split} \min_{s_2} [s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7] \\ &= \min_{s_2} \begin{bmatrix} s_1(L)s_2(L) \times 0.6 + s_1(L)(1 - s_2(L)) \times 0.8 + (1 - s_1(L))s_2(L) \times \\ 0.9 + (1 - s_1(L))(1 - s_2(L)) \times 0.7 \end{bmatrix} \\ &= \min_{s_2} [(0.2 - s_1(L) \times 0.4) \times s_2(L) + (0.7 + s_1(L) \times 0.1)] \\ &\Rightarrow 0.2 - s_1(L) \times 0.4 = 0 \\ &\Rightarrow s_1(L) = \frac{1}{2}, \quad s_1(R) = \frac{1}{2} \\ &\Rightarrow s_1(L) = \frac{1}{2}, \quad s_1(R) = \frac{1}{2} \\ &\Rightarrow s_2 = 0 \\ &\Rightarrow s_1(L) = \frac{1}{2}, \quad s_1(R) = \frac{1}{2} \\ &\Rightarrow s_2 = 0 \\ &\Rightarrow$$

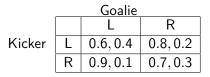
Penalty Kick Game (cont'd)

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

How does the goalie minimize the kicker's maximum?

Penalty Kick Game (cont'd)



How does the goalie minimize the kicker's maximum?

 $\min_{s_2} \max_{s_1} [s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7]$

イロト 不同 トイヨト イヨト

3

Penalty Kick Game (cont'd)

	Goalie		
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

• What is the kicker's maximum?

Goalie			
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is the kicker's maximum?

 $\max_{s_1}[s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7]$

$$= \max_{s_1} \begin{bmatrix} s_1(L)s_2(L) \times 0.6 + s_1(L)(1 - s_2(L)) \times 0.8 + (1 - s_1(L))s_2(L) \times 0.9 \\ + (1 - s_1(L))(1 - s_2(L)) \times 0.7 \end{bmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Goalie			
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is the kicker's maximum?

$$\max_{s_1}[s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7]$$

$$= \max_{s_1} \begin{bmatrix} s_1(L)s_2(L) \times 0.6 + s_1(L)(1 - s_2(L)) \times 0.8 + (1 - s_1(L))s_2(L) \times 0.9 \\ + (1 - s_1(L))(1 - s_2(L)) \times 0.7 \end{bmatrix}$$
$$= \max_{s_1} [(0.1 - s_2(L) \times 0.4) \times s_1(L) + (0.7 + s_2(L) \times 0.2)]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Goalie			
		L	R
Kicker	L	0.6, 0.4	0.8, 0.2
	R	0.9, 0.1	0.7, 0.3

What is the kicker's maximum?

$$\max_{s_1}[s_1(L)s_2(L) \times 0.6 + s_1(L)s_2(R) \times 0.8 + s_1(R)s_2(L) \times 0.9 + s_1(R)s_2(R) \times 0.7]$$

$$= \max_{s_1} \begin{bmatrix} s_1(L)s_2(L) \times 0.6 + s_1(L)(1 - s_2(L)) \times 0.8 + (1 - s_1(L))s_2(L) \times 0.9 \\ + (1 - s_1(L))(1 - s_2(L)) \times 0.7 \end{bmatrix}$$

$$= \max_{s_1} [(0.1 - s_2(L) \times 0.4) \times s_1(L) + (0.7 + s_2(L) \times 0.2)]$$

$$\Rightarrow 0.1 - s_2(L) \times 0.4 = 0$$

$$\Rightarrow s_2(L) = \frac{1}{4}, \quad s_2(R) = \frac{3}{4}$$

Computing Minmax

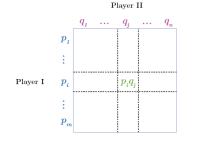
• For 2 players minmax is solvable with LP (Linear Programming).

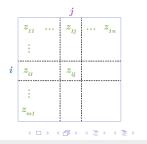
$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & u \succeq 0, \quad \mathbf{1}^T u = \mathbf{1} \\ & P^T u \preceq t \mathbf{1} \end{array}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Correlated Equilibrium: Intuition

- Correlated Equilibrium (informal): a randomized assignment of (potentially correlated) action recommendations to agents, such that nobody wants to deviate.
- In a Nash equilibrium, the probability that player I plays i and player II plays j is the product of the two corresponding probabilities (in this case p_iq_j), whereas a correlated equilibrium puts a probability, say z_{ij}, on each pair (i, j) of strategies.



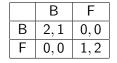


э.

Correlated Equilibrium: Example

Consider again Battle of the Sexes

- In this game, there are two pure Nash equilibria (F, F), (B, B).
- There is also a mixed Nash equilibrium yields each player an expected payoff of ²/₃.
- How might this couple decide between the two pure Nash equilibria?
 - Intuitively, the best outcome seems a 50-50 (based on a flip of a single coin) split between (F, F), (B, B).
 - The expected payoff to each player in this so-called correlated equilibrium is 0.5 * 2 + 0.5 * 1 = 1.5



イロト 不得 トイヨト イヨト 二日

Correlated Equilibrium: Example (cont'd)

- What is the natural solution here?
 - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- We could use the same idea to achieve the fair outcome in battle of the sexes.

Benefits:

- the negative payoff outcomes are completely avoided
- fairness is achieved
- the sum of social welfare can exceed that of any Nash equilibrium

	go	wait
go	-10, -10	1,0
wait	0, 1	-1, -1

イロト 不得 トイヨト イヨト